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horizon AdS2 geometry with constant dilaton and U(1) field and an asymptotic AdS2

geometry with a linear dilaton. Thus, the charged BTZ black hole can be considered as

interpolating between the two different formulations proposed until now for AdS2 quantum

gravity. In both cases the theory is the chiral half of a 2D CFT and describes, respectively,

Brown-Hennaux-like boundary deformations and near-horizon excitations. The central

charge cas of the asymptotic CFT is determined by 3D Newton constant G and the AdS

length l, cas = 3l/G, whereas that of the near-horizon CFT also depends on the U(1)

charge Q, cnh ∝ lQ/
√
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1. Introduction

Quantum gravity in low-dimensional anti-de Sitter(AdS) spacetime has features that make

it peculiar with respect to the higher-dimensional cases. For d = 2, 3 the theory is a

conformal field theory (CFT) describing (Brown-Hennaux-like) boundary deformations and

has a central charge determined completely by Newton constant and the AdS length [1 –

4]. Conversely, in d > 4, quantum gravity in AdS spacetimes should admit a near-horizon

description in terms of BPS solitons and D-brane excitations, whose low-energy limit is an

U(N) gauge theory [5 – 7].

The difference between these two descriptions is particularly evident in their appli-

cation for computing the entropy of non-perturbative gravitational configurations such

as black holes, black branes and BPS states. Brown-Hennaux-like boundary excitations

have been used with success to give a microscopically explanation to entropy of the BTZ

black hole and of two-dimensional (2D) AdS (AdS2) black holes [8, 2]. On the other

hand, D-brane excitations account correctly for the entropy of extremal and near-extremal

Reissner-Nordstrom black holes in higher dimensions [5].

Moreover, the status of the AdS2/CFT1 correspondence [2, 3, 9 – 13] remains still

enigmatic. The dual CFT1 has been identified both as a conformal mechanics and as a chiral

half of a 2D CFT. Progress towards a better understanding of the relationship between

low- and higher-dimensional AdS/CFT correspondence has been achieved in ref. [11]. It
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has been shown that quantum gravity on AdS2 with constant electromagnetic (EM) field

and dilaton can be described by the chiral half of a twisted CFT with central charge

proportional to the square of the EM field.

On the other hand, there is another formulation of AdS2 quantum gravity, which

uses Brown-Hennaux-like boundary states in a 2D AdS spacetime endowed with a linear

dilaton [2]. Also in this case the Hilbert space of the theory falls into the representation of

a chiral half of a CFT, but the central charge is proportional to the inverse of 2D newton

constant. The results of ref. [11] raise the question about the relationship between the two

different realizations of AdS2 quantum gravity.

In this paper we show that a bridge between these two formulations is three-dimensional

(3D) AdS-Maxwell gravity. We find that the charged BTZ black hole admits two limit-

ing regimes (near-horizon and asymptotic) in which the black hole is described by a 2D

Maxwell-dilaton theory of gravity. In the near-horizon, near-extremal regime the black

hole is described by AdS2 with a constant dilaton and U(1) field. In the asymptotic regime

the BTZ black hole is described by AdS2 with a linear dilaton background and U(1) field

strength Ftr = Q/r.

Both regimes are in correspondence with a CFT1, which can be thought as the chiral

half of a 2D CFT. The central charge of the near-horizon CFT is proportional to the

electric charge Q of the BTZ black hole cnh = (3k/4)
√

π/GlQ where k is the level of the

U(1) current. The central charge of the asymptotic CFT is determined completely by 3D

Newton constant G and the AdS length l: cas = 3l/G.

We can therefore think of the charged BTZ black hole as an interpolating solution

between the near-extremal, near-horizon behavior typical of BPS-like solutions in higher

dimensions (e.g. Reissner-Nordstrom black hole solutions in four and five dimensions) and

the asymptotic behavior typical of Brown-Henneaux-like states.

This paper is organized as follows. In section 2 we review briefly the features of the

charged BTZ black hole. In section 3 we investigate the two limiting regimes, namely

the near-horizon limit and the asymptotic r → ∞ limit. In section 4 we describe the

dimensional reduction from three to two spacetime dimensions. In section 5 we investigate

the CFTs that describe the two different regimes and calculate the corresponding central

charges. Finally, in section 6 we present our conclusions.

2. The charged BTZ black hole

The charged BTZ black hole solutions are a generalization of the well-known black hole so-

lutions in (2+1) spacetime dimensions derived by Banados, Teitelboim and Zanelli [14, 15].

They are derived from a three-dimensional theory of gravity

I =
1

16πG

∫

d3x
√−g(3)

(

R +
2

l2
− 4πGFµνFµν

)

, (2.1)

where G is 3D Newton constant, 1
l2

is the cosmological constant (l is the AdS-length) and

Fµν is the electromagnetic field strength. We consider the BTZ black hole with zero angular

momentum and use the conventions of ref. [16].
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Electrically charged black hole solutions of the action (2.1) are characterized by the

U(1) Maxwell field [14, 17],

Ftr =
Q

r
, (2.2)

where Q is the electric charge. The 3D line element is given by

ds2
3 = −f(r)dt2 + f−1dr2 + r2dθ2, (2.3)

with metric function:

f(r) = −8GM +
r2

l2
− 8πGQ2 ln

(

r

w

)

, (2.4)

where M,w are constants and −∞ < t < +∞, 0 ≤ r < +∞, 0 ≤ θ ≤ 2π. Although the

solution depends only on a single integration constant (w can be absorbed by a redefinition

of M), we use both M and w to parametrize the solution (2.3). We will come back to this

point later on this section. Notice that if we require that for Q = 0, M reduces to the

Arnowitt-Deser-Misner (ADM) mass of the uncharged BTZ black hole we must keep both

w and M as independent parameters.

The black hole has one inner (r−) and outer (r+) , one or no horizons depending on

whether

∆ = 8GM − 4πGQ2

[

1 − 2 ln

(

2Ql

w

√
πG

)]

(2.5)

is greater than, equal to or less than zero, respectively. Although these solutions for

r → ∞ are asymptotically AdS, they have a power-law curvature singularity at r = 0,

where R ∼ (8πGQ2)/r2. This r → 0 behavior of the charged BTZ black hole has to be

compared with that of the uncharged one, for which r = 0 represents just a singularity of

the causal structure.

The Hawking temperature TH associated with the outer black hole horizon is

TH =
r+

2πl2
− 2GQ2

r+
. (2.6)

According to the Bekenstein-Hawking formula, the thermodynamic entropy of a black hole

is proportional to the area A of the outer event horizon, S = A
4G

. For the charged BTZ

black hole we have

S =
πr+

2G
=

πl

G

√

2GM + 2πGQ2 ln
(r+

w

)

. (2.7)

Owing to the presence of the ln r term in eq. (2.4) the definition of the mass of the

solution is problematic. By varying the action (2.1) one gets a surface term which diverges

logarithmically for r → ∞ [17]. This divergence can be handled by enclosing the system in

a circle of radius r0, which in terms of the dual CFT has to be interpreted as a UV cutoff.

Writing the metric function (2.4) as f(r) = r2/l2−8GM0(r0, w)−8πGQ2 ln(r/r0), one can

define a regularized mass [17]

M0(r0, w) = M + πQ2 ln
(r0

w

)

. (2.8)
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In the limit r → ∞, one takes also r0 → ∞ keeping the ratio r/r0 = 1. This procedure

allows for the definition of a regularized black hole mass M0(r0, w), which has to be inter-

preted as the total energy (electromagnetic and gravitational) inside the circle of radius

r0. Physical insight on this renormalization procedure can be obtained if one thinks of w,

in the spirit of the Wilson renormalization group, as a running scale. Basically one has

two options: a) one takes M fixed and the metric and the entropy scale-dependent, b) the

metric and the entropy are w-invariant and M runs with w.1

Option a) corresponds to the renormalization prescription of ref. [17], where eq. (2.8)

is used to identify M with the total mass of the solution (the sum of the energy inside the

circle of radius r0 and the electrostatic energy outside it). The entropy change is due to the

new degrees of freedom that are excited when w rises. The drawback of this prescription

is that the position of the black hole horizon r+ (the IR scale in the dual CFT) is not held

fixed but changes with w.

Because we want to keep r+ fixed (this seems necessary in order to give a microscopic

interpretation to the black hole entropy) we will use prescription b). The IR scale is held

fixed when w → λw and the running of the logarithmic term is compensated by the change

of M , M → M +πQ2 ln λ, so that both the metric function f and M0 do not change. This

behavior share some analogy with the UV generation of bigger and bigger flux for the 5-form

in the context of singular IIB supergravity solutions describing fractional 3-branes [18].

As a consequence of the w-invariance of f, S,M0, w and M0 can be arbitrarily chosen.

The most natural physical choice is to first fix the energy scale in terms of the AdS length,

w = l, then fix M0(r0) to its horizon value by setting r0 = r+. According to this choice, in

the following we will set w = l in eqs. (2.4), (2.5), (2.7). The invariant mass of the solution,

which has to be identified with the conserved charge associated with the time translation

invariance is therefore

M0(r+) = M + πQ2 ln
(r+

l

)

. (2.9)

3. The near-horizon limit

We are interested in the near-horizon, near-extremal behavior of the solution (2.3). It is

well known that in this regime asymptotically flat charged black holes in d ≥ 4 dimensions

are described by a AdS2 × Sd−2 geometry, i.e a Bertotti-Robinson spacetime. The flux

of the EM field stabilize the radius of the transverse sphere, so that in the near-horizon,

near-extremal limit it becomes constant and given in terms of the EM charge. Let us show

that this is also the case for the charged BTZ black hole.

The extremal limit r+ = r− = γ of the BTZ black hole is characterized by ∆ = 0 in

eq. (2.5), so that γ is a double zero of the metric function (2.4):

γ = 2
√

πGQl. (3.1)

In order to describe the near-horizon, near-extremal limit of our three-dimensional

solution we perform a translation of the radial coordinate r,

r = γ + x, (3.2)

1We thank the anonymous referee of JHEP for this remark
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and expand both the metric function (2.3) and U(1) field (2.2) in powers of x. We get after

some manipulations

f(x) =
2

l2
x2 − 8G∆M + O(x3), Ftx =

1

2
√

πG l
+ O(x), (3.3)

where ∆M = M−M(γ) = M−πQ2(1
2 −ln(2Q

√
πG)) is the mass above extremality. In the

near-horizon, near-extremal limit the topology of the 3D solution factorize as AdS2 × S1

and the geometry becomes,

ds2
(3) = −

(

2

l2
x2 − 8G∆M

)

dt2 +

(

2

l2
x2 − 8G∆M

)−1

dx2 + γ2dθ2, Ftx =
1

2
√

πGl
. (3.4)

The mass of the excitations above extremality can be also expressed in terms of ∆r+ =

r+ − γ. Up to order three in ∆r+ we have

∆M =
∆r2

+

4Gl2
. (3.5)

The near-horizon, extremal limit of the 3D charged AdS black hole is therefore very sim-

ilar to that of its higher-dimensional, asymptotically flat, cousins such as the Reissner-

Nordstrom solution in four and five dimensions. In particular, our 3D solution shares with

them the thermodynamical behavior. From eqs. (2.6). (2.7), (3.2) one easily finds that the

extremal charged BTZ black hole is a state of zero temperature and constant entropy

S(ext) =
πγ

2G
= π

√

π

G
Ql. (3.6)

For small excitations near extremality we get using (3.5)

Sne =
πγ

2G
+ π

∆r+

2G
=

πγ

2G
+ πl

√

∆M

G
. (3.7)

3.1 The asymptotic r → ∞ limit

It is also interesting to discuss briefly the asymptotic r → ∞ limiting case of the 3D

solution (2.3) and its relationship with the near-horizon solution (3.4). In the r → ∞
limit the metric describes 3D AdS spacetime, whereas the U(1) field goes to zero as 1/r.

As we shall see in detail in the next section also in this regime the 3D solution admits

an effective description in terms of AdS2 endowed with a linear varying dilaton. The

dilaton parametrizes the radius of the transverse one-sphere, which in the r → ∞ limit

diverges. We can therefore think of the full charged BTZ solution (2.3) as a 3D spacetime

interpolating between two regimes admitting an effective description in terms of AdS2.

4. Dimensional reduction of the charged BTZ black hole

The two limiting regimes of the BTZ black hole can be described by an effective 2D

Maxwell-Dilaton gravity model. In order to find this 2D description, we parametrize the

radius of the S1 sphere in the 3D solution (2.3) with a scalar field (the dilaton) φ:

ds2
(3) = ds2

(2) + l2φ2dθ2. (4.1)
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where ds(2) is the line element of the 2D sections of the 3D spacetime covered by the (t, r)

coordinates and φ is a function of t, r only. We will consider only electric configurations

for the 3D maxwell field, i.e we use for Fµν the ansatz

Ftθ = Frθ = 0. (4.2)

Using eqs. (4.1) and (4.2) into the 3D action (2.1) one obtains, after defining the

rescaled dilaton η = (l/4G)φ, the dimensionally reduced 2D action,

I =
1

2

∫

d2x
√−g η

(

R +
2

l2
− 4πGF 2

)

. (4.3)

The field equation stemming from the action (4.3) are

R +
2

l2
− 4πGF 2 = 0

∇µ(ηFµν) = 0

−∇µ∇νη +
[

∇2η − η

l2
+ 2πGηF 2

]

gµν = 8πGηFµβF β
ν . (4.4)

It is important to notice that the field equations are invariant under rescaling of the dilaton

by a constant. This constant mode of the dilaton is therefore classically undetermined but

it can be fixed by matching the 2D with the 3D solution.

The field equations (4.4) admit two classes of solutions whose metric part is always

a 2D AdS spacetime: 1) AdS2 with linear dilaton and with electric field which vanishes

asymptotically (corresponding to the asymptotic r → ∞ regime of the charged BTZ black

hole); 2) AdS2 with constant dilaton and electric field (corresponding to the near-horizon

limit of the BTZ black hole). Let us discuss separately these solutions.

4.1 AdS2 with a linear dilaton

This solution of the field eqs. (4.4) is just the 3D solution (2.3) written in a two-dimensional

form,

ds2 = −f(r)dt2 + f−1(r)dr2, Fµν =
Q

r
ǫµν , η = η̄0

r

l
(4.5)

where f(r) has exactly the same form as given by eq. (2.4), Q is the electric charge and

η̄0 is an integration constant related to the scale symmetry of the 2D field equations. The

integration constants appearing in eq. (4.5) (thus defining the physical parameters of the

2D black hole) can be easily identified in terms of the physical parameters of the BTZ black

hole. The charge Q and mass M of the 2D black hole are the same as those of the BTZ

black hole. The constant η̄0 is determined by the ansatz (4.1),

η̄0 =
l

4G
. (4.6)

With this identification also the temperature and entropy of the 2D black hole match

exactly those for the 3D black hole given by eqs. (2.6) and (2.7). For instance, the entropy

of the 2D black hole is determined by the value of the dilaton on the horizon,

S = 2πηhorizon, (4.7)

which after using eqs. (4.5) and (4.6) reproduces exactly eq. (2.7).
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4.2 AdS2 with constant dilaton and electric field

One can easily realize that the field equations (4.4) admit a solution describing AdS2 with

constant dilaton and electric field. The constant value of the dilaton, which is not fixed by

the 2D field equations, is determined by the ansatz (4.1),

η0 =
l

2

√

π

G
Q. (4.8)

In order to have the usual normalization of the electric field and to make contact with

the model investigated in ref. [11], it is necessary to perform a Weyl transformation of the

metric and a rescaling of the U(1) field strength:

gµν =
η

η0
ḡµν , Fµν =

l

2
√

2πGη0
F̄µν . (4.9)

After this transformation the 2D action (4.3), modulo total derivatives, becomes

I =
1

2

∫

d2x
√−ḡ

[

η

(

R(ḡ) +
(∂η)2

η
+

2η

l2η0

)

− l2

2
F̄ 2

]

. (4.10)

The field equations stemming from this action allow for a solution describing AdS2 with

constant dilaton and electric field, which is the dimensional reduction of the near-horizon

solution (3.4)

ds2 = −(
2

l2
x2 − a2)dt2 + (

2

l2
x2 − a2)−1dx2, F̄µν = 2Eǫµν ,

η = 2l4E2, E2 =
1

4l3

√

π

G
Q, (4.11)

where we have used eq. (4.8) and a2 = 8G∆M .

Following ref. [11] we can linearize the term quadratic in the U(1) field strength by

introducing in the action an auxiliary field h,

I =
1

2

∫

d2x
√−ḡ

[

η

(

R(ḡ) +
(∂η)2

η
+

2η

l2η0

)

− h2

l2
+ hǫµν F̄µν

]

. (4.12)

The field equations for h give

h =
l2

2
ǫµν F̄µν = −2El2. (4.13)

5. Conformal symmetry and central charges

In view of the AdS/CFT correspondence, the existence of two limiting AdS2 configurations

for the charged BTZ black hole imply the duality of the gravitational configuration with

two different CFTs. Both CFTs have been already investigated in the literature and in

both of them the conformal transformations appear as a subgroup of the 2D diffeomor-

phisms. However, they differ in the way the central charge of the CFT is generated. The

CFT associated with the r → ∞ limit, corresponding to AdS2 with a linear dilaton has

– 7 –
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been investigated in ref. [2]. In this case the central charge of the CFT is generated by

the breaking of the SL(2, R) isometry of the AdS2 background due to the non-constant

dilaton [19].

The CFT associated with the near-horizon limit, corresponding to AdS2 with a con-

stant electric and dilaton field has been investigated in ref. [11]. In this case the central

charge of the CFT is generated by the boundary conditions for the EM vector potential.

We will discuss the two cases separately.

5.1 The r → ∞ asymptotic CFT

In this case the conformal algebra is generated by the group of asymptotic symmetries

(ASG) of AdS2 along the lines of ref. [2, 16]. The calculations of refs. [2] can be easily

extended to the theory described by the action (4.3). The only difference is the presence of

the U(1) field, which however, as explained in Ref [16] for the case of 3D gravity, does not

change neither the conformal algebra, which is always given by a chiral half of the Virasoro

algebra, nor the value of the central charge.

The r → ∞ boundary conditions for the fields, which are invariant under 2D diffeo-

morphisms generated by killing vectors χt = lǫ(t) + O(1/r2), χr = −lrǫ̇(t) + O(1/r) are

gtt = −r2

l2
+ O(ln r), gtr = O

(

1

r3

)

,

grr =
l2

r2
+ O

(

ln r

r4

)

, η = O(r), Ftr = O
(

1

r

)

. (5.1)

Notice that we allow for deformations of the dilaton and EM field that are of the same

order of the background solution (4.5). Although the boundary conditions (5.1) are invari-

ant under the action of the asymptotic symmetry group, the classical solution is not. The

linear dilaton and the Q/r EM field break the isometry group of AdS2. The breaking of

the isometry group due to the linear dilaton background produces a nonvanishing central

charge in the conformal algebra [19]. Conversely, the EM field does not contribute to the

boundary charges, but only enters in the renormalization of the L0 Virasoro operator [16].

The generators of the conformal diffeomorphisms close in the Virasoro algebra

[Lm, Ln] = (m − n)Lm+n +
c

12
(m3 − m)δm+n 0. (5.2)

The central charge c can be computed using a canonical realization of the ASG along the

lines of refs. [2, 10, 16]. One has

c = 12η̄0 =
3l

G
. (5.3)

where we have used eq. (4.6).

The eigenvalue l0 of the Virasoro operator L0 has to identified with the conserved

charge associated with the operator generating time-translations. It is therefore given by

the mass M0(r+) of eq. (2.9),

l0 = lM0(r+) = l
[

M + πQ2 ln
(r+

l

)]

(5.4)
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5.2 The near-horizon CFT

The 2D action (4.12) can be recast in the form of a twisted 2D CFT in which a central term

in the Virasoro algebra is generated by boundary conditions for the U(1) vector potential

Aµ, along the lines of ref. [11].

Using a conformal and Lorentz gauge respectively, we fix the diffeomorphisms and U(1)

gauge freedom,

ds2 = −e2ρdx+dx−, ∂µAµ = 0, (5.5)

the action (4.12) becomes up to total derivatives

I =
1

2

∫

d2x

(

−4∂−η∂+ρ +
η

l2η0
+ 2

∂−η∂+η

η
− h2

2l2
+ 4∂−h∂+a

)

, (5.6)

where we have used the fact that in the gauge (5.5) Aµ can be given in terms of a scalar

a, Aµ = ǫµν∂νa.

As usual for gauge-fixing the classical field equations stemming from the action (5.6)

must be supported by constraints,

T±± =
2√−g

δI

δg±±
= −2∂±η∂±ρ + ∂±∂±η − η−1∂±η∂±η + 2∂±h∂±a = 0, (5.7)

J± = 2
δI

δA±
= ±2∂±h = 0. (5.8)

The stress-energy tensor T±± and the U(1) current J± are (classically) holomorphic con-

served and generate, respectively, residual conformal diffeomorphisms and gauge transfor-

mations.

In the conformal gauge the vacuum AdS2 solution (4.11) becomes

ds2 = −2l2
dx+dx−

(x+ − x−)2
, A± =

El2

2σ
, (5.9)

where σ = (1/2)(x+ − x−) and h, η,E are given by eqs. (4.11), (4.13).

Because the dilaton is constant one naively expects that we are dealing with pure

2D quantum gravity, which is known to be described by a CFT with vanishing central

charge [20]. However, it has been shown in [11] that the boundary conditions for the U(1)

vector potential at the σ = 0 conformal boundary of AdS2, Aσ|σ=0 = 0, is not preserved by

conformal diffeomorphisms generated by χ+(x+) and χ−(x−). It must be accompanied by

a gauge transformation ω+(x+)+ω−(x−), which in the case under consideration is given by

ω± = ∓ l2E

2
∂±χ±. (5.10)

Moreover, the requirement the boundary remains at σ = 0 determines a chiral half of the

conformal diffeomorphisms in terms of the second half. The resulting conformal symme-

try can be realized using Dirac brackets. Conformal transformations are generated by the

improved stress-energy tensor

T̃−− = T−− − El2

2
∂−J−. (5.11)
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Expanding in Laurent modes and using the transformation law of the improved stress-

energy tensor

δχT̃−− = χ−∂−T̃−− + 2∂−χ−T̃−− +
c

12
∂3
−χ−, (5.12)

where we allow for the existence of an anomalous term, one finds that the operators L̃ span

the Virasoro algebra (5.2). The transformation law of the original T−− is anomaly-free,

but that of the current J− may have an anomalous term proportional to its level k [11],

δωJ− = k∂−ω−. (5.13)

This allows us to compute the central charge c of the Virasoro algebra,

c = 3kE2l4 =
3

4
k

√

π

G
lQ. (5.14)

6. Conclusion

Using the results of the previous section we can reproduce the entropy of the 2D AdS black

hole (and the entropy of the charged BTZ black hole) by calculating the density of states

ρ(l0) of the CFT with a given eigenvalue l0. In the semiclassical limit c ≫ 1 and for large

l0 we have Cardy formula,

S = ln ρ(l0) = 2π

√

cl0
6

(6.1)

Using Eqs (5.3) and (5.4) we reproduce exactly the black hole entropy (2.7).

In principle, one should also be able to reproduce the entropy of the near-extremal

black hole (3.7) using a similar procedure for the near-horizon twisted CFT. Obviously to

calculate the density of states we have to use in the cardy formula (6.1) the eigenvalues of

the twisted operator L̃0 (the Hamiltonian of the twisted CFT), l̃0, instead of that of the

untwisted operator L0. Calculation of l̃0 requires careful analysis of the CFT spectrum

and detailed knowledge of the effect of the twisting on the Hilbert space of the 2D CFT.

It is important to stress that the eigenvalue of the L0 operator, the Hamiltonian of

the untwisted CFT, must be zero. This is a consequence of the fact that from the purely

two-dimensional point of view the solution (4.11) has zero mass. The mass can be easily

calculated using the usual ADM procedure, i.e considering linear perturbations near the

AdS2 background (the solution (4.11) with a2 = 0). It is well known that any 2D, asymp-

totically AdS, solution of the form (4.11) is locally equivalent to the AdS2 background, i.e

a2 can be gauged away by a 2D diffeomorphism. On the other hand, being the dilaton

and EM field constant, there is no global obstruction to prevent maximal extension of the

spacetime beyond the horizon to recover the AdS2 background. It follows immediately that

the ADM mass of the solution (4.11) must vanish.2

2This is not the case for the 2D solution (4.5), which describes the AdS2 black hole endowed with a

linear dilaton. The dilaton is a non-constant scalar and its inverse gives 2D Newton constant. The Newton

constant singularity at r = 0 has to be considered as a spacetime singularity that represents a global

obstruction to the maximal extension of the spacetime [21]. The ADM mass of the solution is therefore non

zero and given by M .
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The vanishing of the mass of the solution (4.11) is related with the impossibility of

having at the classical level non-singular finite energy excitations of AdS2× S2 [22]. The fact

that the mass of the 2D solution is zero does not imply that the 2D solutions (4.11) cannot

have an associated thermodynamical description nor that the 3D solutions, of which they

are the dimensional reduction, must also have zero mass. Two-dimensional AdS solutions

with constant scalars typically emerge as the dimensional reduction of the near-horizon

regime of extremal charged black holes in higher dimensions. The extremal limit saturates

some BPS bound so that the mass of the extremal solution is different from zero. Although

the mass of the 2D solution is zero one can formulate a thermodynamical description using

the entropy function formalism [23]. Further insight in the thermodynamical behavior of

these objects can also be gained using the attractor mechanism [24, 25].
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